direct product, metabelian, soluble, monomial, A-group
Aliases: D5×C32⋊C4, C3⋊D15⋊1C4, C32⋊1(C4×D5), C3⋊S3.4D10, (C32×D5)⋊1C4, C32⋊Dic5⋊1C2, C5⋊3(C2×C32⋊C4), (C3×C15)⋊1(C2×C4), (C5×C32⋊C4)⋊2C2, (D5×C3⋊S3).1C2, (C5×C3⋊S3).1C22, SmallGroup(360,130)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C3×C15 — C5×C3⋊S3 — D5×C3⋊S3 — D5×C32⋊C4 |
C3×C15 — D5×C32⋊C4 |
Generators and relations for D5×C32⋊C4
G = < a,b,c,d,e | a5=b2=c3=d3=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ede-1=cd=dc, ece-1=c-1d >
Character table of D5×C32⋊C4
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 5A | 5B | 6A | 6B | 10A | 10B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | |
size | 1 | 5 | 9 | 45 | 4 | 4 | 9 | 9 | 45 | 45 | 2 | 2 | 20 | 20 | 18 | 18 | 8 | 8 | 8 | 8 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 0 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 0 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | 0 | -2 | 0 | 2 | 2 | 2i | -2i | 0 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | ζ43ζ54+ζ43ζ5 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | ζ4ζ54+ζ4ζ5 | complex lifted from C4×D5 |
ρ14 | 2 | 0 | -2 | 0 | 2 | 2 | -2i | 2i | 0 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | ζ4ζ54+ζ4ζ5 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | ζ43ζ54+ζ43ζ5 | complex lifted from C4×D5 |
ρ15 | 2 | 0 | -2 | 0 | 2 | 2 | -2i | 2i | 0 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | ζ4ζ53+ζ4ζ52 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | ζ43ζ53+ζ43ζ52 | complex lifted from C4×D5 |
ρ16 | 2 | 0 | -2 | 0 | 2 | 2 | 2i | -2i | 0 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | ζ43ζ53+ζ43ζ52 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | ζ4ζ53+ζ4ζ52 | complex lifted from C4×D5 |
ρ17 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | 4 | 2 | -1 | 0 | 0 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ18 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | 4 | -2 | 1 | 0 | 0 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ19 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 4 | 4 | -1 | 2 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ20 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 4 | 4 | 1 | -2 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ21 | 8 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | -2+2√5 | -2-2√5 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 8 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | -2-2√5 | -2+2√5 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 8 | 0 | 0 | 0 | 2 | -4 | 0 | 0 | 0 | 0 | -2-2√5 | -2+2√5 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 8 | 0 | 0 | 0 | 2 | -4 | 0 | 0 | 0 | 0 | -2+2√5 | -2-2√5 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 26 11 21)(7 27 12 22)(8 28 13 23)(9 29 14 24)(10 30 15 25)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26,11,21)(7,27,12,22)(8,28,13,23)(9,29,14,24)(10,30,15,25)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26,11,21)(7,27,12,22)(8,28,13,23)(9,29,14,24)(10,30,15,25) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,26,11,21),(7,27,12,22),(8,28,13,23),(9,29,14,24),(10,30,15,25)]])
G:=TransitiveGroup(30,99);
Matrix representation of D5×C32⋊C4 ►in GL6(𝔽61)
60 | 45 | 0 | 0 | 0 | 0 |
60 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 1 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 0 | 60 | 0 |
50 | 0 | 0 | 0 | 0 | 0 |
0 | 50 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(61))| [60,60,0,0,0,0,45,44,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,60,60,0,0,0,0,0,0,0,1,0,0,0,0,60,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,0,0,0,0,1,0],[50,0,0,0,0,0,0,50,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
D5×C32⋊C4 in GAP, Magma, Sage, TeX
D_5\times C_3^2\rtimes C_4
% in TeX
G:=Group("D5xC3^2:C4");
// GroupNames label
G:=SmallGroup(360,130);
// by ID
G=gap.SmallGroup(360,130);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-5,31,489,111,490,376,10373]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^2=c^3=d^3=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*d*e^-1=c*d=d*c,e*c*e^-1=c^-1*d>;
// generators/relations
Export
Subgroup lattice of D5×C32⋊C4 in TeX
Character table of D5×C32⋊C4 in TeX