Copied to
clipboard

G = D5×C32⋊C4order 360 = 23·32·5

Direct product of D5 and C32⋊C4

direct product, metabelian, soluble, monomial, A-group

Aliases: D5×C32⋊C4, C3⋊D151C4, C321(C4×D5), C3⋊S3.4D10, (C32×D5)⋊1C4, C32⋊Dic51C2, C53(C2×C32⋊C4), (C3×C15)⋊1(C2×C4), (C5×C32⋊C4)⋊2C2, (D5×C3⋊S3).1C2, (C5×C3⋊S3).1C22, SmallGroup(360,130)

Series: Derived Chief Lower central Upper central

C1C3×C15 — D5×C32⋊C4
C1C5C3×C15C5×C3⋊S3D5×C3⋊S3 — D5×C32⋊C4
C3×C15 — D5×C32⋊C4
C1

Generators and relations for D5×C32⋊C4
 G = < a,b,c,d,e | a5=b2=c3=d3=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ede-1=cd=dc, ece-1=c-1d >

5C2
9C2
45C2
2C3
2C3
9C4
45C4
45C22
6S3
6S3
10C6
10C6
30S3
30S3
9C10
9D5
2C15
2C15
45C2×C4
30D6
30D6
5C3⋊S3
5C3×C6
9Dic5
9C20
9D10
2C3×D5
2C3×D5
6D15
6C5×S3
6D15
6C5×S3
5C32⋊C4
5C2×C3⋊S3
9C4×D5
6S3×D5
6S3×D5
5C2×C32⋊C4

Character table of D5×C32⋊C4

 class 12A2B2C3A3B4A4B4C4D5A5B6A6B10A10B15A15B15C15D20A20B20C20D
 size 15945449945452220201818888818181818
ρ1111111111111111111111111    trivial
ρ2111111-1-1-1-11111111111-1-1-1-1    linear of order 2
ρ31-11-111-1-11111-1-1111111-1-1-1-1    linear of order 2
ρ41-11-11111-1-111-1-11111111111    linear of order 2
ρ51-1-1111-ii-ii11-1-1-1-11111ii-i-i    linear of order 4
ρ61-1-1111i-ii-i11-1-1-1-11111-i-iii    linear of order 4
ρ711-1-111i-i-ii1111-1-11111-i-iii    linear of order 4
ρ811-1-111-iii-i1111-1-11111ii-i-i    linear of order 4
ρ92020222200-1-5/2-1+5/200-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ10202022-2-200-1-5/2-1+5/200-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/21+5/21-5/21-5/21+5/2    orthogonal lifted from D10
ρ11202022-2-200-1+5/2-1-5/200-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/21-5/21+5/21+5/21-5/2    orthogonal lifted from D10
ρ122020222200-1+5/2-1-5/200-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ1320-20222i-2i00-1+5/2-1-5/2001+5/21-5/2-1-5/2-1+5/2-1-5/2-1+5/2ζ43ζ5443ζ5ζ43ζ5343ζ52ζ4ζ534ζ52ζ4ζ544ζ5    complex lifted from C4×D5
ρ1420-2022-2i2i00-1+5/2-1-5/2001+5/21-5/2-1-5/2-1+5/2-1-5/2-1+5/2ζ4ζ544ζ5ζ4ζ534ζ52ζ43ζ5343ζ52ζ43ζ5443ζ5    complex lifted from C4×D5
ρ1520-2022-2i2i00-1-5/2-1+5/2001-5/21+5/2-1+5/2-1-5/2-1+5/2-1-5/2ζ4ζ534ζ52ζ4ζ544ζ5ζ43ζ5443ζ5ζ43ζ5343ζ52    complex lifted from C4×D5
ρ1620-20222i-2i00-1-5/2-1+5/2001-5/21+5/2-1+5/2-1-5/2-1+5/2-1-5/2ζ43ζ5343ζ52ζ43ζ5443ζ5ζ4ζ544ζ5ζ4ζ534ζ52    complex lifted from C4×D5
ρ174-400-210000442-10011-2-20000    orthogonal lifted from C2×C32⋊C4
ρ184400-21000044-210011-2-20000    orthogonal lifted from C32⋊C4
ρ194-4001-2000044-1200-2-2110000    orthogonal lifted from C2×C32⋊C4
ρ2044001-20000441-200-2-2110000    orthogonal lifted from C32⋊C4
ρ218000-420000-2+25-2-250000-1-5/2-1+5/21+51-50000    orthogonal faithful
ρ228000-420000-2-25-2+250000-1+5/2-1-5/21-51+50000    orthogonal faithful
ρ2380002-40000-2-25-2+2500001-51+5-1+5/2-1-5/20000    orthogonal faithful
ρ2480002-40000-2+25-2-2500001+51-5-1-5/2-1+5/20000    orthogonal faithful

Permutation representations of D5×C32⋊C4
On 30 points - transitive group 30T99
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 26 11 21)(7 27 12 22)(8 28 13 23)(9 29 14 24)(10 30 15 25)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26,11,21)(7,27,12,22)(8,28,13,23)(9,29,14,24)(10,30,15,25)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26,11,21)(7,27,12,22)(8,28,13,23)(9,29,14,24)(10,30,15,25) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,26,11,21),(7,27,12,22),(8,28,13,23),(9,29,14,24),(10,30,15,25)]])

G:=TransitiveGroup(30,99);

Matrix representation of D5×C32⋊C4 in GL6(𝔽61)

60450000
60440000
001000
000100
000010
000001
,
100000
1600000
0060000
0006000
0000600
0000060
,
100000
010000
0006000
0016000
0000060
0000160
,
100000
010000
001000
000100
0000601
0000600
,
5000000
0500000
000010
000001
000100
001000

G:=sub<GL(6,GF(61))| [60,60,0,0,0,0,45,44,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,60,60,0,0,0,0,0,0,0,1,0,0,0,0,60,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,0,0,0,0,1,0],[50,0,0,0,0,0,0,50,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

D5×C32⋊C4 in GAP, Magma, Sage, TeX

D_5\times C_3^2\rtimes C_4
% in TeX

G:=Group("D5xC3^2:C4");
// GroupNames label

G:=SmallGroup(360,130);
// by ID

G=gap.SmallGroup(360,130);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,3,-5,31,489,111,490,376,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^3=d^3=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*d*e^-1=c*d=d*c,e*c*e^-1=c^-1*d>;
// generators/relations

Export

Subgroup lattice of D5×C32⋊C4 in TeX
Character table of D5×C32⋊C4 in TeX

׿
×
𝔽